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ABSTRACT 

This work investigates the problem of robotic arm control with the goal of 

achieving given performance requirements by solving for the optimal joint 

trajectories and corresponding controls for tasks, such as point-to-point 

positioning.  The resulting optimal control problem is highly nonlinear and 

constrained due to the nonlinearities in the robotic arm dynamics and 

kinodynamic constraints including limits on joint velocities and actuator torques.  

This thesis illustrates the applicability of pseudospectral methods to solve 

the optimal path planning problem for a system of multi-link, multi-degree of 

freedom robotic arms.  The optimal control problem is defined in standard form 

and solved using the software package DIDO.  Pontryagin’s Minimum Principle is 

used to verify that the proposed solution satisfies the necessary conditions for 

optimality.  A particularly challenging aspect that is explored is the optimal motion 

of multiple arms conducting independent tasks with the risk of collision.  Collision 

avoidance can be achieved by modeling appropriate path constraints.   

The processes for optimal trajectory planning are developed for a single 

two degree-of-freedom manipulator conducting point-to-point positioning and 

extended to include dual three degree-of-freedom manipulator maneuvers 

employing collision avoidance.  The results demonstrate the suitability of 

pseudospectral techniques to solving the minimum time and minimum control 

maneuvers for robotic arms.  The employment of collision avoidance techniques 

will facilitate continued research in autonomous robotic motion planning using 

optimal control criteria in multiple arm systems. 
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I. INTRODUCTION 

A. MOTIVATION 

The use of robotic arms has become commonplace in today’s 

technological society.  These machines accomplish tasks from the mundane to 

the miraculous with little regard to how they calculate their motion by the majority 

of the populace, after all the motion control of one’s arm is much more 

complicated than a simple robotic arm yet it is accomplished with little effort.  The 

reality is that the mathematical model for robotic motion is highly nonlinear and 

not intuitive.  

Optimal path planning is the primary means to achieve efficient control of 

robotic manipulators in physical space.  Methods of achieving optimal control 

have been researched extensively over the past half century, but it is only with 

the increase in computational power and advanced numerical techniques over 

the past decade or so that optimal control can now be realized in a wide variety 

of  tasks.  The field of robotics has historically used some form of optimization to 

achieve efficiencies in the motion of systems with the goal of autonomous 

operations implied in many endeavors.   

Terrestrial applications of robots abound and the economic benefit for 

achieving efficiencies in motion cannot be taken lightly and is a driving force 

behind many of the previous studies in robotic optimal control [1,2,3].  Even a 

small increase in efficiency can have a large effect on throughput.  Some of 

these applications require a form of autonomous or adaptive path planning, and 

the vast majority of them are very specific tasks that are suited to specific 

methods of calculating highly accurate trajectories that satisfy specific conditions.  

Space applications of robotic manipulators also lend themselves towards 

exploring autonomous path planning for a variety of machines.  Robot arms have 

been used extensively on the Space Shuttle and the International Space Station 

(ISS) with increasing levels of complexity.  A very good example of the use of 
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cooperative robotic arms was in April 2001 when the ISS’s Canadarm2 was used 

to transfer cargo directly with the shuttle Endeavor’s arm (Figure 1, [4]).   While 

most of this work was accomplished via manual control, only a little imagination 

is necessary to see the usefulness of autonomous control for a system of 

cooperating robotic manipulators.  The Naval Research Laboratory (NRL) has 

been conducting research in participation with the Defense Advanced Research 

Project Agency (DARPA) on a program to use a system of robotic arms on an 

advanced serving satellite [5].  SUMO, or Spacecraft for the Universal 

Modification of Orbits, is a program that is being investigated to integrate 

autonomous rendezvous and grappling technologies into a relatively low cost 

means of altering a satellite’s orbit.  As Figure 2 shows, SUMO is envisioned to 

have three seven degree-of-freedom (DOF) robotic arms that will require 

advanced motion planning in a cluttered environment to operate safely.  The NRL 

is developing control algorithms that operate in real time and must satisfy the 

non-linear dynamics and constraints of the system.  Traditional optimal control 

techniques in the presence of obstacles were deemed “unsuitable for real-time” 

use due to their speed and complexity. 

 

 

Figure 1. Cooperating Robotic Arms in Space: International Space Station 
Arm Canadarm2 Transfers Cargo to Endeavor’s Arm April 28, 2001 (From [4]) 
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Figure 2. SUMO Advanced Servicing Spacecraft (From [5]) 

B. TRAJECTORY PLANNING 

Traditionally, the study of robotic control has been approached in two 

stages or levels (see Figure 3).  The first stage is off-line path planning or 

trajectory planning.  Various methods are utilized to compute a suitable state 

trajectory for the robot to achieve the desired task given the physical constraints 

on the system.  Once that path has been defined, an inner loop controller can be 

used in real time to correct the errors in the path of the robot’s actual trajectory 

within the tolerance value of the desired path [6,7,8].  Most previous work has 

been focused on the path planning problem and defining some form of an 

optimal, collision free trajectory.  Ideally, the computation of the optimal control 

trajectory could take place within a controller and allow a single stage control of 

robotic systems.  However, computation time required for the path planning 

problem typically makes this solution infeasible to implement in real time.  Figure 

3 diagrams a number of robotic control methods and illustrates the two-level 

approach described [3, 8]. 
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Figure 3. Synoptic Diagram of Optimal Motion Planner for Robotic 
Manipulators (From [8]). 

The problem of trajectory planning can be formulated as a general optimal 

control problem that seeks to minimize some cost function (also called an 

objective function in some literature).  Given the state variables XNx and 

UNu , the standard optimal control problem is written in the form: 
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where J is the cost function, E is the endpoint cost, F is the running cost, f is the 

set of equations describing the dynamics of the system, e is the set of endpoint 
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constraints, and h is the set of path constraints [9].  The most common 

optimization problem in robotics is to solve the minimum time problem where the 

cost function E=tf .  A running cost such as F=uTu is also used to reduce the 

control effort.  Variations on this basic cost function have been explored in the 

literature [2,8,10,11,12,13].  The endpoint constraints define the final state of the 

system.  The path constraints can include torque and velocity limits on the joints 

of the manipulator, geometric limits to the system, criteria for obstacle avoidance, 

and path tracking depending on the task.  A trajectory is considered feasible, 

though not necessarily optimal, if the dynamics, endpoint constraints, and path 

constraints are satisfied. 

Trajectory planning for robotics typically takes one of two forms: a 

decoupled approach, which first finds a feasible path and then optimizes the 

control along that path; and a direct trajectory planning approach, which includes 

taking kinodynamic constraints of the system to solve an optimal path [7, 8].  

These two methods each have merits and drawbacks.  

A substantial amount of research has been focused on decoupled 

methods by improving the performance of a robotic system given a specified 

collision-free path [6,7,8,13,14,15].  These types of trajectories are particularly 

useful in tasks that require specific trajectories to accomplish the assigned task.  

As an example, [13] presents an algorithm that searches for a time optimal 

control trajectory while minimizing the control effort along a specified path.  This 

formulation is fairly typical of previous methods and useful as a brief illustration.  

For a robotic manipulator, the specified path is normally defined by the position 

and orientation of the tool being used.  The dynamics of the system can be 

derived using a number of methods such as the Lagrange–Euler method.  The 

path is first specified in terms of the generalized joint coordinates and then 

written in parametric form using a standard interpolation method.  The method of 

parameterizing the motion of the robot is complex and not trivial.  The path is 

scaled and its first, second, and third order derivatives are calculated.  The cost 

function is then restated in terms of the scaled parametric values and minimized 
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in terms of the parametric variables, which are compared to the kinematic 

constraints of the system to check for feasibility.  Reference [13] uses a genetic 

algorithm to search for the optimal solution, while reference [10] proposes phase 

plane techniques that solve the minimum time problem along a desired path 

given in parametric form.  Such methods often assume some form of bang-bang 

control near the limits of the feasible joint space, which may not be desirable 

since the sudden change in manipulator torques can cause damage, or 

excessive wear, or excite flexible modes. 

When the path is not specified, approaches have been proposed to solve 

the global time optimal solution using grid or cell type iterations based on the 

decoupled path planning problem method [16, 17].  These are highly involved 

and can only be considered to converge to near-optimal trajectories in some 

cases [6].  In general, these approaches attempt to optimize every possible path 

and are therefore not practical in high dimensional problems. 

Robotic manipulators usually consist of multiple links and can achieve an 

objective maneuver through multiple paths.  Optimization results often produce 

surprising results that can be physically explained, but may differ from an intuitive 

solution [3].  Full motion planning or direct trajectory planning computes the 

optimal solution in the state space of the system and solves an unknown optimal 

trajectory of each joint.  When the movement of the robot is not specified, these 

trajectory methods are more useful than the decoupled path planning algorithms 

at minimizing some cost function over the semi-infinite range of possible 

trajectories.  Many direct trajectory planning techniques have been explored over 

the past three decades.  Excellent surveys can be found in [6], [8], and [19].  

Figure 4 is a useful diagram that summarizes some of the methods used to solve 

the trajectory planning problems.  These algorithms can be used to solve point-

to-point, or pick-and-place trajectory problems where only the initial and final 

positions of the end effector are defined.  Path constrained optimization problems 

can also be solved.  Methods of computing optimal trajectories generally fall 

within two categories: direct and indirect [8].   
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Figure 4. Optimal Free Trajectory Planning Problem Methods (From [8]) 

Indirect methods are primarily based on Pontryagin’s Minimum Principle 

and solving the necessary conditions for optimality [18,19].  Given a standard 

problem formulation of the form of Equation (1), the control Hamiltonian is 

defined whereH   and XNλ  is the adjoint covector or costate vector: 

 ( , , , ) : ( , , ) ( , , )TH t F t t λ x u x u λ f x u  (2) 

Then applying the Lagrange multiplier, N hμ  in order to define the Lagrangian 

of the Hamiltonian yields: 

 ( , , , , ) TH t H μ λ x u μ h  (3) 
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Similarly, an end-point Lagrangian is given by  

 TE E  ν e  (4) 

where N eν .  The lower Hamiltonian, H is the value of the Hamiltonian with 

the optimum control profile and is defined as  

 ( , , ) min ( , , , )
NU

t H t



u

λ x λ x uH  (5) 

The necessary conditions can then be described by Equations (6)-(10) below [9]. 

Hamiltonian Minimization Condition: 0
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Hamiltonian Value Condition:  
0

0
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t
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 (9) 

Hamiltonian Evolution Condition:  
H

t





H  (10) 

The optimal trajectory can then be found by solving the multi-point 

boundary value problem by a multiple shooting method though convergence to a 

solution can be difficult to predict [8].  An excellent survey of indirect methods for 

computing the optimal trajectory for robotic manipulators is presented in [19].  

The penalty for applying indirect methods to solve the optimal control problem is 

the amount of effort required to deriving the necessary conditions, particularly for 

complex systems.   
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The most common method to solving optimal control problems in recent 

years is by using direct methods [6,8,15,19].  In general these methods depend 

on discretizing the state and control variables and using nonlinear optimization 

techniques [15], evolutionary or hierarchical approaches [20,21], or stochastic 

methods to optimize the solution.  The latter two techniques tend to suffer from 

“numerical explosion when treating high dimension problems [8].”     

Almost all the methods to solve optimal problems require a level of 

discretizing the state and control parameters in some way.  Traditional 

parameterization is done by uniformly distributing nodes along the time profile 

and solving a constrained optimization problem using gradient based nonlinear 

optimization techniques such as sequential quadratic programming (SQP).  An in 

depth approach to treating the optimal control problem via a direct means is 

presented in [3] and is representative of nonlinear optimization techniques.  An 

initial control function is used to provide an initial guess to the algorithm within 

the feasible bounds of u.  The corresponding state values, x, are then 

approximated using a collocation technique that results in a piece-wise trajectory 

that satisfies the system dynamics and constraints via a multiple shooting 

method.  The state and control function can then be parameterized and used to 

define the cost function.  This results in a large scale nonlinear optimization 

problem.  A numerical algorithm, such as SQP, which is tailored to the structure 

of the problem, is then used.   

Regardless of the techniques used to solve the path planning problem, the 

direct and indirect methods can be used to complement each other.  A candidate 

solution can be verified by comparing the results to the necessary conditions for 

optimality [22].  A hybrid solution is presented in [2] that uses a direct collocation 

approach, which parameterizes the state, and control variables with a poor initial 

guess trajectory using the endpoints to interpolate a discreet solution.  This is 

then used to approximate a nonlinear optimization problem using SQP.  

Pontryagin’s necessary conditions are then calculated symbolically based on the 

dynamics and constraints of the system.  The results of the direct collocation 
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calculation can then be used as the initial guess to solve the multipoint boundary 

value problem.  While this method is useful, the calculation of the necessary 

conditions are computationally intensive and make solving anything more 

complex than a 3-DOF system difficult [2]. 

Pseudospectral methods have also been proposed to solve the trajectory 

planning problem for robotic manipulators [23].  This method differs from 

previous direct methods primarily by the discretization method.  The Legendre 

pseudospectral method approximates the state and control variables using 

particular interpolating polynomials.  The discretized nodes are non-uniformly 

spaced based on Legendre-Gauss-Lobatto point allocation.  The Covector 

Mapping Theorem allows this method to “make no distinction between the so-

called direct and indirect methods” [22] and lends itself to verification by 

application of Pontryagin’s Minimum Principle with the automatic generation of 

states, costates, and other dual variables. 

C. THE COOPERATIVE PLANNING PROBLEM 

Multiple robots working in the same space complicate the path-planning 

problem exponentially.  There are generally two traditional approaches to 

attacking the problem of coordinated movement between multiple robots: 

centralized planning and decoupled planning [6].  The latter consists of finding 

feasible paths for each robot without regard to the other robots, in other words 

disregarding any risk of collision.  The robots are then sequenced by adjusting 

start times and velocities of the individual arms to avoid potential collisions 

[24,25].  This method may be considered attractive from a computational aspect 

because the dimensions of the problem are limited to a single robot at a time; 

however, the system is not optimized.  The former robots become solid obstacles 

in the way of the latter’s motion and may shrink their feasible work space to zero.  

Cooperation between the robots is unlikely.   

Centralized planning computes the trajectory of all elements of the system 

simultaneously and effectively treats the system as a single state vector.  As the 
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number of individual robots increase, the dimension of the problem increases 

accordingly.  When the centralized planning problem is solved, the solution 

provides the state and control trajectory for the complete system.  While 

computation speed may seem a concern in implementing the method on practical 

applications, increased computing power and efficient numerical techniques are 

allowing centralized planning of more and more complex systems to be plausible. 

Obstacle avoidance algorithms rely on measuring the distance between 

the objects and including some buffer.  A number of methods that maneuver a 

point target around an obstacle-rich environment have been previously proposed 

[26,27].  Distance functions are used in most algorithms that use geometric 

shapes to define the obstacles, most of which compare the set of points for one 

obstacle to the set of points in the other obstacle and finding the minimum 

distance.  This requires some means of discretizing the obstacles and using a 

brute force method to compare each point [6,28].  For example using a finite 

number of different radii spheres to cover the obstacles and constrain the 

minimum distance between spheres [8].  This formulation would define a path 

constraint such that at each point in time the minimum distance between the 

centers of each sphere is greater than some reference distance. 

A variation of this technique was presented in [29] where a distance 

function from a set of reference points of each manipulator to the obstacle was 

computed.  

 
 

22 2
[ ] [ ][ ] [ ] [ ] [ ]
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where Dk is the distance, l
kM  is a set of l= 1,…,n points that describe the contour 

of the manipulator arms at time k, i
kP  is a set of points that describe the center of 

each obstacle, i, at time k, and Lj describes the obstacle size in each direction.  

The cost function can then include the term JD where 0
DJ  is a reference distance: 
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A collision, in theory, would make JD=0 which is the maximum value in this 

formulation.  A collision free path, assuming the function is properly scaled, 

would have a lower cost than a path with a collision.  However, there is no 

guarantee that the system will avoid a collision.  

D. A COOPERATIVE CONTROL PROPOSAL 

Optimal cooperative path planning consists of simultaneously solving 

trajectories for multiple robotic arms while meeting all obstacle avoidance criteria.  

Rather than discretizing the links of an arm and solving the avoidance problem in 

the work space, this thesis proposes reformulating the minimum distance 

problem in a parametric form and solving a parameterized optimization problem.  

Pseudospectral optimal control formulations readily lend itself to solving such 

problems.  

Using the software program DIDO, pseudospectral methods are used to 

solve the optimal minimum-time trajectory for 2-DOF and 3-DOF robotic 

manipulators conducting point-to-point maneuvers where the initial point is given 

in joint coordinates and the final point in Cartesian coordinates.  The computed 

state, costate, and control trajectories facilitate verifying Pontryagin’s necessary 

conditions for optimality.  The calculated control trajectory is then propagated to 

demonstrate feasibility.  Building on these results, dual manipulator solutions are 

analyzed and presented using variations of cost functions.  Finally, two methods 

of formulating obstacle avoidance criteria are presented and compared in various 

scenarios.   A static obstacle avoidance formulation is first illustrated followed by 

a system of two multiple link arms performing a simple pick-and-place operation. 
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II. OPTIMAL TRAJECTORY PLANNING 

Pseudospectral (PS) methods have been used to solve a variety of 

trajectory planning and optimal control problems as shown in [27,30,31,32,33].  

PS methods have been flight tested onboard the International Space Station, and 

other flight experiments are in the planning stages.  Given their widespread 

applicability, it should be no surprise that the manipulator path planning problem 

is a logical application of these techniques.  Motion planning for time-optimal 

point-to-point maneuvers in a pick-and-place operation is considered here.  The 

optimal control formulation incorporates realistic constraints on the joint velocities 

and accelerations as well as bounds on actuator torque to ensure the solution 

trajectories are physically realizable.  The efficacy of PS optimal control 

techniques is demonstrated via simulation.  The first analysis considers a simple 

two link, two degree of freedom (2-DOF), three-dimensional motion of an arm 

with a full development of kinematics, dynamics, constraints, and Pontryagin’s 

necessary conditions [18].  The second analysis uses the same principles to 

develop trajectories for a single three link, 3-DOF manipulator. 

A.  PROBLEM FORMULATION FOR A 2-DOF MANIPULATOR 

The robotic arms used throughout this study are based on the Cyton 

Alpha 7D1G from Robai.  While not exact, the model assumes homogenous rigid 

arms and perfect actuators.  Dynamics that are more complex can be 

incorporated into the problem formulation with the same techniques 

demonstrated below used to formulate the optimal control problem.   

1.  Modeling Dynamics and Kinematics 

The Cyton Alpha is a seven degrees of freedom manipulator with an end 

effector as pictured in Figure 5 [34].  Specific joints can be locked to simulate 

fewer degrees of freedom.  The first problem formulated is a three dimensional 

motion of a 2-DOF arm as sketched in Figure 6 where ai is the offset in the local 
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x coordinate system and di is the offset in the local z direction.  θ1 is the angle of 

rotation of the base and θ2 is the angle of the arm with respect to horizontal.  

Based on the Cyton Alpha specifications, limits were placed on the motor torque 

for each joint, τimax and the maximum angular velocity, ωimax.  Initial discrepancies 

between the model dynamics and the actual arm in the laboratory required 

angular acceleration limits, αimax in order to increase the accuracy of the results.  

Link 1, the base unit, is modeled as a homogeneous cylinder and the arm is 

modeled as a thin rod. 

 

Figure 5. Cyton Alpha 7D1G 7-DOF Robotic Manipulator (From [34]) 

 

Figure 6.  Sketch of 2-DOF Robotic Arm Model 
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Link 1 (Base) Link 2 (Arm) 
a1 0.00 m a2 0.48 m 
d1 0.15 m d2 0.02 m 
m1 0.150 kg m2 0.385 kg 
τ1max 
ω1max 

α1max 

2.4 N m 
7.5 rad/sec 
7.5 rad/sec2 

τ2max 
ω2max 

α2max 

2.9 N m 
7.5 rad/sec 
10 rad/sec2 

Table 1. 2-DOF Dimensions and Limits 

It is usually desirable to map the position of the end effector from joint 

coordinates to a Cartesian coordinate system.  The origin for the coordinate 

system is the center of the base.  A Denavit-Hartenberg homogenous transfer 

matrix was used to characterize the kinematics of the robotic arm.  Using planar 

rotations and linear displacements Equations (11) and (12) explicitly define the 

end effector position. 
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While this is the method employed almost universally and will be used 

throughout this work, other means of deriving the kinematics are available and 

may prove to be better suited to solving the optimal control problem.  Reference 

[15] has suggested the use of Lie groups and Lie algebras to formulate the 

kinematics and subsequent dynamics of the system. 

The dynamics of the robotic arm were calculated using a Lagrangian 

formulation of the equations of motion [7,35,36].  The general equation of motion 

takes the form  

     ( ) ( ) ( )D C gq q q,q q q Q  (13) 
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where q is the vector of generalized coordinates (θ1 and θ2 in this case), D is a 

positive definite inertia matrix, C is the velocity coupling vector, g is the 

gravitation force vector, and Q is the generalized force vector or the joint torques, 

1 and 2 in this case.  The algorithm presented in [35] was used to develop the 

general equations for this model symbolically using the software program Maple 

and is presented in the appendix.  Using the values from Figure 6, Equation (13) 

was solved and is shown to three significant figures for the 2-DOF three-

dimensional model in Equation (14).   
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2.  Formulation of Optimal Control Problem 

The dynamics formulated above are the basis for the optimal control 

problem formulation shown in Equation set (15).  Let x be the state vector and u 

the control vector.  The cost function, J, was chosen to minimize the time of the 

maneuver based on the constraints of the system.  Other cost functions can be 

developed to minimize the control effort (such as a quadratic cost), energy, or 

some combination of elements.  e is the endpoint function where the initial angles 

0 and the final endpoint coordinates [xf, yf, zf] are given by solving Equation (12) 

for a feasible 1 and 2.  In addition, let h be defined as the path constraints on 

the function that in this case is simply the angle, angular velocity, and torque 

limits.  
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3. Necessary Conditions 

To be optimal, the solution must satisfy Pontryagin’s necessary conditions.  

Define the Hamiltonian, H as a function of running cost, F,  the vector of costates, 

λ(t), and the right-hand side of the dynamics, ( ) ( , , )t f x u tx : 

 ( , , , ) :  ;   NTH t F   Xλ x u λ f λ  

              
1 2 1 21 2 1 2H  (16) 

The path constraints must be taken into account as well.  For the simplest 

2 DOF problem the constraints are the limits of the control and state vectors 
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defined in Equation set (1515).  Equation (17) defines the Lagrangian of the 

Hamiltonian, H . 
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(17) 

Similarly, the Equation (18) defines the Endpoint Lagrangian, E  where E 

is the endpoint cost: 
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Pontryagin’s necessary conditions are defined in Equations (19) – (23).  

The Hamiltonian Minimization Condition (HMC) requires 0
H


u

. 
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The adjoint condition requires 
H

 


λ
x

 . 



 19 
 

 

  

  

   

   

 
  

  
 

  
  

 
   

 
 

   
 

    
         

    
                    

    
                



1 2 1

1 2 2

1 1 1 2

2 2 1 2

1 2

1 1 1

1 2

2 2 2

1 2

1 11

1 2

2 22

( )

( )

H

H

H

H

λ

 

 

    

  



  

 
   

   
 

 


 

  

  



  


 


 

 


 
   

 

  

 

 








1 1 2 2 2

1 1 1

2

2 2

2 2 2 1
2 2

2 2

2 2 2 1 1 2
2

1 2

2 2

2
2 2

sin(2 )(252 15.9sin( ) )

127 126cos(2 ) cos

sin(2 )(15.9sin( ) 128 126 cos2 )

127 126cos(2 ) co

0

( ) ( )

( )

           + 

( )

s

λ



   
 




   
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 

 


 





1

2

2 2 2 1
2 2

2 2

2 2 1 2 2
2 2

2 2

sin(2 )(252 15.9sin( ) )

127 126cos(2 ) cos

sin( )(15.9sin(2 ) 2cos(
                        

) )

127 126cos(2 ) cos
     +

 (20) 

It is valuable to note that λ1 is constant and can be used to verify the 

optimality conditions.  The transversality condition requires  
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The Hamiltonian Value Condition requires: 
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E
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 (22) 

Finally, the Hamiltonian Evolution Equation requires that the optimal 

control trajectory satisfies Equation (23). 

 0
H

H
t


 


  (23) 

The above necessary conditions provide two useful checks for optimality.  

The Hamiltonian can be analyzed for optimality and should be a constant -1 for 

all time and λ1 is constant.   

4.  Minimum Time Simulation Set-up and Results 

The three-dimensional 2-DOF robotic arm is used to demonstrate the 

applicability of using pseudospectral techniques to solve the time-optimal 

trajectories with various endpoint conditions using the software package DIDO.  

Two trajectories are presented below.  To ensure that the endpoint coordinates 

are reachable within the state bounds, feasible initial and final angles were first 

selected.  The final angles were then mapped to the corresponding final 

manipulator endpoints using Equation (12).  The assumption in this the simplest 

case is that the final orientation of the manipulator is not a constraint on the 

system, only that it is at the correct position.  It is important to note than even in 

the 2-DOF system, a given set of joint angles produces a unique point in space, 

but the reverse is not necessarily true.  A point in space may have multiple 
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solutions in joint space and choosing specific final angles to ensure the feasibility 

of the maneuver does not guarantee that those angles would be the optimal final 

state.   

To obtain the optimal solution, DIDO was run in normal mode using a 

bootstrapping technique.  The initial run was calculated using a 16 node solution 

that in turn was used as a guess for a 30 node solution that in turn was used as 

an initial guess for a 60 node solution.  It was found that 60 nodes were sufficient 

to properly propagate the system using a differential solver such as ODE45 and 

using the linearly interpolated values of the discrete control trajectory. 

Table 2 lists the initial conditions used for two scenarios.  The final angles 

were used to calculate the final endpoint constraints.  Scenario 1 consisted of a 

positive 90° rotation about the base of the arm with the initial and final angle of 

the second link at 45°.  Figure 7 shows the optimal trajectory results of that run.  

As shown, the time-optimal maneuver was calculated to be a simple rotation 

about the base.  Figure 7 - Figure 9 plot the results for analysis.  As shown, H=-1 

and λθ1 is constant as required by Equations (23) and (20).  The minimum time 

maneuver completes in 0.92 seconds for this problem formulation.   
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Table 2. 2-DOF Simulation Initial Conditions 
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Figure 7.  2 DOF arm simulation, Scenario 1: 90° maneuver. 
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Figure 8. 2-DOF Arm Simulation, Scenario 1 State History 
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Figure 9. 2-DOF Arm Simulation, Scenario 1: Costates and Hamiltonian 

Scenario 2 was designed as a similar maneuver with the arm rotating -90° 

about the base.  Again, the final coordinates of the manipulator end effector were 

calculated using Equation (11).  The results were quite different than the previous 

scenario as shown in Figure 10 with a maneuver time of 0.880 seconds.  Figure 

11 shows that the final base angle, θ1, is not -90° as expected but rather 83.2° 

(1.45 radians) and the arm elevation, θ2, is 135°.  No assumptions were made as 

to the trajectory of the arm and it became obvious that the endpoint coordinates 

could be achieved in two ways and solving the reverse kinematics problem 

shows this.  The pseudospectral solver solved the solution that required the 

minimum time to accomplish, which in this case was a rotation of 83.2° vice a 

rotation of 90° due to the offset of the arm from the centerline of the base. 
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Figure 10. 2-DOF Arm Simulation, Scenario 2: “-90°” maneuver. 
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Figure 11. 2-DOF Arm Simulation, Scenario 2: State History   
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The control torques on both joint actuators were indirectly constrained in 

the simulation by an added constraint on the angular acceleration based on 

empirical performance characteristics measured on a physical arm.  

Nevertheless, the pseudospectral solver produced a control that resembles a 

bang-bang control for both actuators as shown in Figure 12.  However, the 

torque required to rotate the base was noticeably smaller.  The momentum of the 

arm in combination with the small base torque, was sufficient to rotate the arm 

the 83.2° required to complete the maneuver. 
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Figure 12. 2-DOF Arm Simulation, Scenario 2: Control Torque 

To ensure the feasibility of the trajectory, the control torque was 

interpolated using a basic linear interpolation function in Matlab and propagated 

using the same dynamic equations (14) and the ODE45 function at 20 Hz 

intervals (the minimum sampling rate of the arm).  The results are plotted in 

Figure 13 with the propagated angles and angular velocities overlaid every 0.05 

seconds on the DIDO solution.  
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Figure 13. 2 DOF Arm Simulation, Scenario 2: Propagated State Vector. 

While relatively simple dynamics were used in the above problem 

formulation, the method can be used on more complex dynamics that include 

actuator characteristics and non-rigid links [37].  The PS methods implemented 

by DIDO would refine the optimal solution as the accuracy of the model 

increases.  

B.  PROBLEM FORMULATION FOR 3-DOF MANIPULATOR  

1. Modeling Dynamics and Kinematics 

The Cyton Alpha arm was also modeled as  a 3-DOF manipulator.  Figure 

14 is a sketch of the configuration used in deriving the equations of motion.  The 

angle of the bottom link was locked at 45°.  Maple was used to map the joint 

positions and end-effector position from link coordinates to Cartesian coordinates 

similar to the 2-DOF case above.  Equation (24) defines the positions of the arm 

end-effector  as functions of θi.  For the purposes of this simulation, the two free 
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links have dimensions given in Table 3 and are joined by simple revolute joints 

with the angular limits defined by Equation set (25).  The Equations of motion for 

this model were developed using the algorithm presented in [35] in form of 

Equation (13) using Maple.   

 

Figure 14. 3 DOF Robotic Arm Configuration 

 
Link 1 (Base+Arm 1) Link 2 Link 3 
a1 0.115 m a2 0.170 m a3 0.140 m 
d1 0.270 m d2 0.020 m d3 0.010 m 
m1 0.375 kg m2 0.100 kg m3 0.110 kg 

Table 3.  3-DOF Arm Dimensions 
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2.  Formulation of Optimal Control Problem and Necessary 
Conditions 

The optimal control problem builds on the previous 2-DOF example.  With 

the state and control variables, x and u respectively, defined below, the minimum 

time problem formulation is shown in Equation set (25).  The θi and i limits were 

defined in the Cyton documentation.  In order for the links to be kept rigid by 

intermediate motors,  angular acceleration limits, αi were imposed on the system 

based on actual tests conducted on the arm.  It is important to note that  
i i  in 

the inertial reference frame.  While not ideal, the above described formulation is 

to demonstrate the feasibility of the pseudospectral methods and an exact model 

was deemed beyond the scope of this investigation.   
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Just as in the 2-DOF problem, Pontryagin’s necessary conditions for 

optimality were derived for the 3-DOF arm.  These conditions are similar in form 

to Equations (16) - (23).  The only two useful results of the necessary condition 

analysis are that the H=-1 for all time, t and λθ1 is constant.  

3. Simulation Results 

A number of simulations using this problem formulation were conducted 

using DIDO.  For each simulation, the initial angles and the final manipulator 

coordinates were defined.  The final position of the robotic end-effector was 

chosen such that the final joint angles were at their upper limits.  Figure 15 

shows the results.  Just as they were calculated in the 2-DOF model, the 

manipulator coordinates were calculated using Equation (24) given a set of 

feasible joint angles.  The results are similar to those from the 2-DOF problem.  

Figure 16 and Figure 17 show the computed state and control trajectories for this 

problem.  
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Figure 15. Single Arm 3 Degree of Freedom (3-DOF) Optimal Time Maneuver 
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Figure 16. Single Arm 3-DOF Simulation State Trajectory 
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Figure 17. Single Arm 3-DOF Simulation Control Trajectory 

The increase in complexity from the 2-DOF to 3-DOF problem is evident 

from the time duration of the pseudospectral calculations.  The runtime for the 2-

DOF problem averaged a few seconds, while the 3-DOF problem took about one 

minute.  More importantly was that DIDO required an initial guess for some of the 

endpoint conditions in order to find a feasible solution.  For this problem, a two 

point guess was used with the initial and final angles and a final time of 2 

seconds.  The angular velocity and control torque were assumed to be 0 for the 

guess.  DIDO was able to solve the optimal control problem and find a feasible 

solution.  Future versions of DIDO will incorporate more advanced guess-free 

algorithms such as those discussed in [38] that may alleviate this requirement.   

C.  DUAL ARM  TRAJECTORY PLANNING 

The ultimate goal of this investigation is the simultaneous path planning of 

multiple robotic manipulators.  As such, the next step taken was to formulate the 

minimum time problem using two arms and analyze the results.  Below is the 3-

DOF problem formulation with simulation results from both 2-DOF and 3-DOF 

arms.  No attempt was made to avoid arm interference, but only to demonstrate 

the ability for pseudospectral methods to calculate dual arm trajectories and 

compare to single arm trajectories.   
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1. Problem Formulation 

The dynamics and endpoints of the multi-arm problem are formulated 

similarly to the single arm problem.  The dual arm formulation is presented below 

for the 3-DOF robotic motion case.  In this case, the arms are identical copies of 

each other, but this does not need to be the case.  Equation Set (26) defines the 

endpoint coordinates for each arm a and b.  Arm b is offset from arm a and the 

origin by the vector 0 0 0[ , , ]b b b Tx y z .   
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Equation sets (27)  and (28) show that the dynamics of the problem are 

completely uncoupled in its formulation.   
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The optimal control problem is now defined as follows: 
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2.  Simulation Results 

Adding the second arm increases the complexity of the problem and for 

some endpoint conditions, a simple two-point guess was required for DIDO to 

converge to a solution.  A bootstrapping technique was used with a 16 node 

solution being calculated then used as a guess for a 30 node and then a 60 node 

solution.  The second arm was offset from the origin by 30 cm in the –y direction.  

Figure 18 plots the simulation results for the two arms with the given endpoint 

conditions.  Figure 19  plots the Hamiltonian for the system and verifies the 

necessary Hamiltonian Value Condition. 
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Figure 18. Dual Arm 3-DOF Simulation (No Obstacle Avoidance) 
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Figure 19. Dual Arm 3-DOF (No Obstacle Avoidance) Hamiltonian 

These results were derived using minimum time as the cost function.  

While all the joint angles are coupled, generally there is a joint that limits the 

minimum time, in this case 2 for arm A and 1 for arm B.  In addition, one arm 

will limit the minimum time of the entire multi-arm system.  It is important to note 

that the minimum time for the system to complete the maneuver is dictated by 
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the arm whose time-optimal maneuver takes longer to complete.  The trajectory 

of the other arms and joints will technically meet the minimum time condition 

regardless of the path it takes so long as it arrives at its endpoint conditions at tf.   

Figure 20 plots the differences that can occur between the dual arm and 

single arm minimum time maneuvers.  The solid lines in the figures are the single 

arm solutions and the dashed lines are from the dual arm system.  The minimum 

time defining joint 2 for arm A is nearly identical for both the single and dual arm 

algorithms.  The other joints, while not following exactly the same trajectory, did 

find the same minimum time route to the endpoint.  Arm B, which took 0.92 

seconds to complete its maneuver in the single arm computation follows a similar 

path in the dual arm algorithm, but at a slower rate.   
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Figure 20. Comparison of Dual Arm Algorithm and Single Arm Algorithm 

While technically the results are time-optimal, there is no measure of 

efficiency in the computation of the angles of arms that are not limited by the 

system minimum time.  A good example is the oscillations in arm B’s 1 and  in 

the dual arm algorithm.  One remedy is to solve for the optimal trajectory in two 

--  Single Arm Algorithm
o    Dual Arm Algorithm  

--  Single Arm Algorithm
o    Dual Arm Algorithm  
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steps.  First, solve the minimum time problem, then use that minimum time to 

bound the horizon of the problem and solve a minimum energy or quadratic 

problem among the various possible minimum time trajectories.  Another solution 

is to add some measurement of efficiency such as a minimum energy or 

minimum control to the cost function to find a minimum time solution that also 

maximizes the efficiency of the system.  The modified cost function could take 

the form of Equation (29) where [A] is a diagonal matrix of weighting factors.  

Assuming tf is sufficiently large compared to the running cost, the minimum time 

solution can be found while simultaneously maximizing the efficiency of the 

solution.   

  A  
0

ft
T

fJ t u u  (29) 

The results of rerunning the same endpoint conditions using Equation (29) 

as the cost function with unity weighting are presented in Figure 21.  A number of 

conclusions can be made from this plot.  First, it illustrates that there are multiple 

minimum time paths, particularly for those joints that do not limit the minimum 

time.  The final time using the new cost function is the same to within 10-3 second 

while decreasing quadratic control cost by 26.3%.  This improvement factor was 

found by numerically integrating the calculated control vector of the two 

scenarios.  In addition, these results demonstrate the effect of gravity on the 

system.  In Figure 20, arm B’s second and third links remain nearly parallel as θ2 

and θ3 remain at nearly 0 throughout the maneuver.  However, including the 

quadratic cost demonstrates that the minimum control torque required to 

complete the maneuver is not the parallel motion.  θ2 and θ3 in Figure 21 actually 

drop below parallel to minimize the total control torque over the course of the 

maneuver. 
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Figure 21. Comparison of Dual Arm Algorithm and Single Arm Algorithms 
Including Minimum Effort  

Changing the cost function, J,  to Equation (29), does alter some of the 

necessary conditions, but does not change the two useful conditions used in this 

analysis to check for optimality: H(t)=-1 and λ1=constant.  What it also does not 

do is simultaneously find minimum time solution for the arm that does not limit 

the minimum time for the system.  A viable solution for this using pseudospectral 

methods is not presented here but poses an interesting path for future research.   

D. AN ALTERNATE PROBLEM FORMULATION 

While the standard problem formulation used above finds an optimal 

solution, there are other ways of formulating this optimization problem.  One such 

alternate method that was investigated was to reformulate the problem statement 

by eliminating all trigonometric functions.  Rather than defining the state variables 

in terms of θi and ωi, let the state variables be defined by the sine and cosine of 

the angles.  While this increases the dimension of the state variables, there are  
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no trigonometric functions in the dynamics which may be computationally 

advantageous .  The state x, control u and dynamics x  for each arm are defined 

for the 2-DOF problem as 
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Because the states are no longer angles, the following additional path 

constraints are required on the system: 
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The bounds on the states based on the physical limitations of the system must 

also be reformulated: 
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The endpoints must also be redefined by the new state variables: 
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Using the same endpoint conditions in section 2-A, the alternate problem 

formulation was solved using Equation (29) as the cost function in DIDO.   
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Regardless of cost function, tf = 0.92 seconds which corresponds to the minimum 

time solution of the +90° rotation from scenario 1 above.  Figure 22 illustrates the 

calculated system trajectory.    
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Figure 22. 2 Arm, 2-DOF Simulation Using Alternate Problem Formulation 

This result  shows that other proper problem formulations will result in the 

same trajectory as the original problem formulation.  Figure 23 compares the 

calculated joint angle trajectories for the two problem formulations.  It is apparent 

that regardless of the problem formulation, DIDO computed a very similar 

solution.  However, there are preferred formulations for numerical computation 

efficiency.  Figure 24 demonstrares that the original problem formulation, for this 

particular model, is better scaled and can be solved an order of magnitude faster. 
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Figure 23. Comparison of Original and Alternate Problem Formulation 
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Figure 24. 30 Node Hamiltonian Values for Different Problem Formulations 
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III. OBSTACLE AVOIDANCE 

A. BACKGROUND 

Of major importance in robotic trajectory planning is solving the obstacle 

avoidance problem.  In the most simplistic terms, the issue is one of determining 

the distance between each arm and any potential obstacle.  A number of studies 

have been published on obstacle avoidance in motion planning of robotic 

vehicles [1, 12, 28 ,39, 40] where the obstacle is mathematically modeled as an 

enclosed polygon with the vehicle as a point in space and time.  A path constraint 

that restricts the point from entering the polygon by a sufficient buffer ensures 

collision avoidance is included in the algorithm.  While this is useful in a number 

of autonomous motion planning problems, it does not account for a set of 

continuous points such as arms of finite length.  A different path constraint 

formulation is required.   

In the most general sense, each manipulator link and obstacle can be 

modeled as some rigid geometric shape and the minimum distance between 

each link and each potential collision must be calculated at each point in time.  

Solving the obstacle avoidance problem for a continuous set of points rather than 

a discrete point in space and time complicates the problem.  In the simplest case, 

each link of each arm can be modeled as a line segment.  The minimum distance 

between every two links that have the potential to collide must be computed at 

each time and incorporated into the path constraint.  The optimal control problem 

increases in complexity, but pseudospectral methods can still be used to solve 

the trajectory with this path constraint and a given minimum distance between 

links. 

1. Minimum Distance between Two Continuous Lines 

Before discussing the obstacle avoidance algorithm, it is necessary to first 

determine the minimum distance between two static arms.  Each link is modeled 
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as a line segment using the parametric equations of a line in 3 .  Define p1 and 

p2 as the two endpoints of an individual line segment:     
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These values are then used to define the following values for lines a and b: 
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The equations for two links modeled as a line segment where t and s are 

parametric variables take the form: 
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For any two values for t and s, the distance between the vectors a  and b  is the 

norm of the vector difference between them.  

        
1
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T
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It is more convenient to calculate the square of the distance.  Squaring Equation 

(31) and grouping terms yields: 
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The coefficients of Equation (32) are scalar values.  Let 
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Substituting Equation set (33) into (32) gives 

      2 2 2d At Bt Cst Ds Es F  (34) 

Equation (34) is a parabaloid in 3
with A > 0 and E > 0.  The minimum 

distance for two infinite lines is found by calculating the minimum distance over 

all points ,t s .  This is an unconstrained optimization problem with the cost 

function Y = d2 and the optimization variable x = [ t, s ]T or   
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 (35)  

The minimum must satisfy both the stationary condition and convexity condition: 
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where x* are the parametric coordinates of the minimum distance between the 

two lines.  The stationary condition for Equation (35) is 
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and solving for x* yields 
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Likewise, the convexity condition takes the form 
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Equation (38) is semi-positive definite and meets the convexity condition 

when 4AE- C2 ≥0.  This is true for all t and s and can be seen by breaking it into 

the vector components:     
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It is interesting to note that a unique solution only exists when 4AE- C2≠0.  

When 4AE-C2=0, the two arms are parallel and there is an infinite set of 

solutions.  Substituting Equation (37) into (35) gives the minimum distance 

between two infinite lines. 

2. Minimum Distance between Two Line Segments 

While the discussion on the minimum distance between infinite lines is 

useful to this problem, the minimum distance between two arm segments is a 

box-constrained optimization problem: 

 

     
 
 

2 2min ( , )        

subj to   0 t 1

             0 s 1

Y t s At Bt Cst Ds Es F

 (39) 

The Lagrangian of Equation (39) is now defined as 

 
       2 2( , ) t+ s t sY At Bt Cst Ds Es Fx λ

  

and the first order necessary condition is  
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This is a more complicated problem to solve.  The parametric coordinates 

for the minimum distance are now functions of the Lagrange multipliers t and s.  
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The Lagrange multipliers in Equation (40) and (41) must be found and 

satisfy the Karush-Kuhn-Tucker (KKT) conditions: 
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i cannot be solved analytically in a general sense and other methods must be 

used to evaluate the endpoints of the segment.   

References [41] and [42] develop geometric algorithms to solve the 

minimum distance between line segments which are summarized below.  The 

first step is to calculate 4AE- C2 to find out if the line segments are parallel.  Next, 

the minimum parameters t* and s* for two infinite lines that are defined by 

extending the two line segments are calculated.  If those values are both 

between 0 and 1, then those are the coordinates of the minimum distance and 

can be used to calculate d Equation (34).  If t* is outside the range [0,1] and s* is 

within the range, then the tmin is located at the endpoint closest to t*.  Using that 

endpoint condition as a constant, Equation (36) can then be solved for smin.  If 

smin is now outside the range [0,1] then s is set to the endpoint closest to smin and 

a new tmin is computed.  The reverse is also true.  This approach can be applied if 

the line segments are parallel and if both global minimums are outside of the 

range.   
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Figure 25 demonstrates the algorithm that can be applied to determine 

parametric coordinates that define the minimum distance between two line 

segments using values from Equations (33) and (37).  While this algorithm 

efficiently calculates the minimum distance between two static lines, it requires 

nine if-then statements and is not necessarily a continuously differentiable 

function over time.   

If 
4AE‐C2=0

t = 0
s = ‐D/2E

t = t*
s = s*

If
t < 0

If 
t > 1

If 
s > 1

If 
s < 0

t = 1
s = C‐D/2E

If 
‐B < 0

If 
‐B > 2A

t = 0
s = 0

t = 1
s = 0

t = ‐B / 2A
s = 0

If 
C‐B < 0

If 
C‐B > 2A 

t = 0
s = 1

t = 1
s = 1

t = C‐B / 2A
s = 1

tmin = t
smin = s

then

else 

 

Figure 25. Geometric Algorithm for Min. Distance Between Line Segments. 
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B. STATIC OBSTACLE AVOIDANCE 

1.  2-DOF Case 

The above algorithm was used as a path constraint to define the minimum 

distance between the centerline of an arm and the centerline of a cylinder 

defined by the respective endpoints.  DIDO allows the path constraint to be a 

function that incorporates the complexity of the geometric analysis.  The problem 

formulation is identical to Equation set (1515) except the added path constraint 

2 2
mind d  is included where d is the instantaneous distance between the arm and 

the obstacle and dmin is the pre-defined obstacle avoidance distance.  For the 

purposes of simulation, dmin= 5 cm.  The centerline of the obstacle was placed 45 

cm above the base of the arm and oriented along the y axis of the Cartesian 

coordinate system.  Once again, an initial 16 node solution was calculated and 

then used as a guess for a more refined 60 node solution in order to interpolate a 

feasible control trajectory when propagating the solution using ODE45 in Matlab.  

The relevant initial and final conditions of the simulation are included in Table 4. 

 

10 = - 60° [xef, yef, zef] = [.186, .281, .483] [x1, y1, z1]obs = [-0.5, 0, .55] 

20 = 45° dmin = 5 cm [x2, y2, z2]obs =[ 0.5, 0, .55] 

Table 4. Example Endpoint Conditions for Single 2-DOF Arm with Static 
Obstacle Avoidance 

Figure 26a demonstrates the solution for the defined maneuver without 

imposing the obstacle avoidance path constraint and using the cost function 

 0

.5
ft

T
fJ t  u u

 

As the figure illustrates, the arm passes through the centerline of the 

obstacle.  Figure 26b demonstrates the same maneuver with the collision 

avoidance algorithm active.  The trajectory of the arm changes to allow a 

minimum 5 cm buffer between the arm and line.  Figure 27 -Figure 29 provide the 
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corresponding state and control trajectories, the costate values over time, the 

Hamiltonian value, and the variation of the minimum distance between the arm 

and the obstacle during the obstacle avoidance maneuver. 
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Figure 26. 2-DOF Maneuver Without and With Static Obstacle Avoidance 
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Figure 27. 2-DOF Motion with Static Obstacle Avoidance: State and Control 
Trajectories 

-0.2
0

0.2
0.4

-0.5
0

0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

XY

Z

[a] [b] 



 49 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

0

0.5

C
o

st
a

te
s

 

 

1


2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

C
o

st
a

te
s

 

 

1


2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1

0
Pendulum w/ Base - Hamiltonian

Time [sec]

H
a

m
ilt

o
n

ia
n

 
V

a
lu

e

 

Figure 28. 2-DOF Motion with Static Obstacle Avoidance: Costate and 
Hamiltonian Trajectories 
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Figure 29. 2-DOF Motion with Static Obstacle Avoidance:  Distance between 
Link and Obstacle (5 cm Buffer) 
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2. 3-DOF Case 

Similar to the 2-DOF case, the 3-DOF problem formulation is identical to 

Equation Set (25) with the added complexity of the path constraint imposed to 

guarantee a minimum distance between both links and the obstacle.  The path 

constraint for this problem includes  

 





2 2
1min 1

2 2
2min 2

d d

d d  

where di_min are the minimum distances between the obstacle and each 

respective link.  The joint positions must be computed at each node in time using 

the kinematic model and these points define the line segments used to compute 

the minimum distance.     

 

θ10 = 80° [xef, yef, zef] = [.029, -.334, .049] [x1, y1, z1]obs = [-1, 0, 0.4] 

20 = 45° d1min = 0.05 m [x2, y2, z2]obs = [ 1, 0, 0.4] 

θ20 = 0° d2min = 0.05 m   

Table 5. Example Endpoint Conditions for Single 3-DOF Arm with Static 
Obstacle Avoidance 

Figure 30a demonstrates the minimum time solution for the above 

maneuver without the obstacle avoidance algorithm.  As the figure illustrates, the 

arm passes through the centerline of the line used to model the obstacle.  Figure 

30b demonstrates the same maneuver with the collision avoidance algorithm 

active.  The trajectory of the arm changes to allow a minimum 5 cm buffer 

between the arm and static cylinder.  The maneuver time for both simulations 

was 1.22 seconds.  The difference in the trajectory can be attributed to the 

weighted quadratic cost function.  Figure 31 - Figure 33 are plots of the solution 

trajectories.  Of particular interest are the Hamiltonian and λ1 that still satisfy the 

necessary condition derived in the original 3-DOF case.   
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Figure 30. 3-DOF Maneuver Without and With Static Obstacle Avoidance: 60 
Node Solution 
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Figure 31. 3-DOF Motion with Static Obstacle Avoidance: State and Control 
Trajectories 
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Figure 32. 3-DOF Motion with Static Obstacle Avoidance: Costates and 
Hamiltonian 
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Figure 33. 3-DOF Motion with Static Obstacle Avoidance: Distance between 
Links and Obstacle 

In applying the PS  based obstacle avoidance algorithm, one must note 

that the numerical solution, uses discrete times or nodes to calculate the state 

and control trajectories and the path constraints are only tested and guaranteed 

at each of these nodes.  A low node solution, while feasible at each discrete 
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node, may not to be physically realizable.  Figure 34 and Figure 35 illustrate a 

16- node solution for the same problem.  The nodal spacing in these cases is 

such that the trajectory seems to jump the obstacle, that is the path constraints 

are met at the two nodes on either side of the obstacle as shown in Figure 35 but 

the arm trajectory would collide with the obstacle as it proceeds from one node to 

the next.  The possibility of nodal jumping requires that the computed trajectory 

be analyzed to ensure it is feasible and may necessitate increasing the number 

of nodes, and therefore, the computational time to find a feasible solution.   
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Figure 34. 3-DOF Motion with Static Obstacle Avoidance: 16 Node Solution 
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Figure 35. Minimum Distance Between Links and Obstacle,16 Node Solution 
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C. NUMERICALLY SOLVING THE KKT CONDITIONS  

Returning to the discussion of minimum distance between line segments, 

solving Equation (41) should produce the minimum distance parametric 

coordinates.  While this equation cannot be solved analytically, it can be solved 

numerically using DIDO.  

 Taking a step back to basic optimality, the constraints on the variables 

can be rewritten in the form y(x) ≤ 0 where y is a vector of constraint functions. 

 

     
 

   

2 2minimize    ( , )        

subj to          - 0          - 0

1 0         1 0

Y t s At Bt Cst Ds Es F

t s

t s   

Taking the Lagrangian of the cost function yields a new optimization 

problem. 

            





2 2
1 2 1 2minimize      ( , ) ( -1)  + ( 1)

subj to                0
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t t s s
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Rewriting Equation (40) using the new Y  gives  
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with the constraints 

 
 

 
   

  
1 1

2 2

( ) 0                   ( ) 0

( 1) 0                 ( -1) 0 
t s

t s

t s

t s
 (44) 

By letting s, t, and i be six dummy control variables for each possible 

collision in the problem formulation, DIDO can numerically solve the problem with 

the KKT conditions that resemble the distance between two lines.  Defining the 

minimum distance allowed between two arms, Equations (34), (43) and (44) 
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specify seven path constraints that are associated with each potential collision.  

While this increases the number of variables and functions, it directly solves the 

original obstacle avoidance problem without geometric checks and resulting 

pitfalls described by Figure 25. 

1. 2-DOF Case 

The motion planning problem was reformulated to include the dummy 

control variables and additional path constraints for the case of two 2-DOF arms:     
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Using DIDO, the optimal trajectory was computed by solving the distance 

between the arms at each node and bounding the dummy control variables: 

 

0 1

0 1

0 i

t

s



 

 

    

The results of this formulation are compared to those found using the 

geometric algorithm and presented in Figure 36 and Figure 37.  The state and 

control trajectories are nearly identical with tf and cost differences are on the 

order of 10-6.  The only significant difference was the computational time.  On 

average, the KKT algorithm converged to a solution for the 2-DOF problems 

nearly twice as fast as the geometric algorithm. 
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Figure 36. 2-DOF Static Obstacle Avoidance: State and Control Trajectories 
(KKT Algorithm versus Geometric Algorithm) 
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Figure 37. 2-DOF Static Obstacle Avoidance: Hamiltonian Values (KKT 
Algorithm versus Geometric Algorithm) 
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2. 3-DOF Case 

The 3-DOF example was also reformulated using the KKT algorithm with 

an 18-element control vector, u and 14 path constraint equations.  Figure 38 

presents the results of this simulation.  The maneuver time for both the geometric 

algorithm and the KKT algorithm are the same to within 10-3 at 1.221 seconds.  

Both functions used a cost function of the form 

 
0

.1
ft

T
fJ t  u u

 
(45) 

The difference in cost between the two algorithms was 0.001 and may 

account for the slight difference in 2 and 3 trajectories.  The Hamiltonian 

presented in Figure 39 corresponds to the required necessary condition, H=-1, 

just as it did for the geometric algorithm.  The distance between the obstacle and 

the two links of the arm are presented in Figure 40.   

The only major difference between the solutions for the two minimum 

distance algorithms is the computational time.  It is difficult to accurately assess 

the runtime using DIDO because other processes are often running on the 

computer and solution times vary considerably for the same problem.  Typically 

runtimes for a 16-node solution took 5-15 minutes regardless of the algorithm 

used.  In an effort to make a meaningful comparison, a previous 60 node solution 

was used as an initial guess for each problem formulation.  A 60 node solution 

took 115 seconds to run for the KKT algorithm compared to 93 seconds for the 

geometric algorithm.  The trend appears that as the complexity of the problem 

increases and the dimension of control vector increases, the KKT solution is 

slower than the Geometric solution for the same problem.  
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Figure 38. 3-DOF Static Obstacle Avoidance: State and Control Trajectories 
(KKT Algorithm versus Geometric Algorithm) 
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Figure 39. 3-DOF Static Obstacle Avoidance: Hamiltonian Values (KKT 
Algorithm versus Geometric Algorithm) 
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Figure 40. Minimum Distance Between Links and Obstacle (KKT Algorithm 
versus Geometric Algorithm) 
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           IV. COOPERATIVE PLANNING USING PS METHODS 

The implementation of the obstacle avoidance algorithm in Chapter III 

demonstrates that pseudospectral techniques are capable of solving a range of 

problems.  While the model was specific to an arm and a static cylinder-type 

object, the next step is to implement the same concept to find an optimal path to 

more complex systems.  As part of this research, one interesting problem is to 

solve the optimal control trajectory of a multiple arm system where the arm links 

are modeled as line segments.  Path planning for two arms has already been 

presented in Chapter II.  Adding the path constraints from the obstacle avoidance 

algorithms presented in Chapter III allows for cooperative or, at the least, 

simultaneous control of a system of arms.  Two examples are presented below 

using the dual arms that detail optimal path planning for 2-DOF and 3-DOF 

motions. 

A.  DUAL 2-DOF MANIPULATORS  

The dual 2-DOF arm cooperative planning problem is a straight forward 

modification of  the static obstacle formulation.  The obstacle is now each link of 

the other arm.  The minimum distance between the links of the two arms can be 

computed for any given time using either of the algorithms presented in Chapter 

III and can be constrained to be greater than some preset distance.  Table 6 

presents the endpoint conditions used to define the problem.   
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Table 6. 2-DOF Cooperative Path Planning Endpoint Conditions 
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The two arms were offset by 0.30 m along the y axis and the final 

coordinates of the end-effector were chosen based on angles 1 = 0° and 2= 45° 

for Arm a and 1 = -60° and 2 = 60° for Arm b.  DIDO was used to solve the 

problem with thecost function from Equation (45).  The path constraint uses the 

endpoints of the arm links at each “node” to compute the distance between the 

arms and was constrained to be above some minimum distance dmin.   

The optimal maneuver for this particular setup with no obstacle avoidance 

algorithm dmin= 0 has a closest point of approach of 10 cm and takes 0.75 

seconds to complete.  Figure 41 shows such unconstrained optimal state 

trajectory and Figure 42 is the minimum distance between the arms throughout 

the maneuver.  For this maneuver, J=0.968. 
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Figure 41. 2-DOF Cooperative Path Planning with No Obstacle Avoidance: 
State Trajectory 
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Figure 42. 2-DOF Cooperative Path Planning with No Obstacle Avoidance: 
Distance between Arms 
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Figure 43. Cooperative Path Planning for Dual 2-DOF Arms with 19.5 cm 
Minimum Clearance 
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If 10 cm is not sufficient for the arms to avoid colliding it is imperative to 

modify the problem and define a more restrictive dmin.  For the maneuver with the 

above endpoint conditions, the maximum buffer distance between the arm links 

is 19.7 cm.  The following example uses the same endpoint conditions; however, 

dmin was given as 19.5 cm.  DIDO was run using both the geometric and KKT 

collision avoidance algorithms with similar results.  Figure 43 depicts the arms at 

four points along the computed path.  A red line is attached to the points on each 

arm where the minimum distance between the arms occur.  While not clear in the 

plots, that minimum distance line is perpendicular to both arms.  Figure 44 - 

Figure 47 show results using the geometric algorithm for obstacle avoidance. 
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Figure 44. 2-DOF Cooperative Path Planning using Geometric Algorithm and 
19.5 cm Buffer: State Trajectories 
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Figure 45. 2-DOF Cooperative Path Planning using Geometric Algorithm and 
19.5 cm Buffer: Control Trajectories 
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Figure 46.  2-DOF Cooperative Path Planning using Geometric Algorithm and 
19.5 cm Buffer: Hamiltonian Value 
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Figure 47. 2-DOF Cooperative Path Planning using Geometric Algorithm and 
19.5 cm Buffer: Minimum Distance between Arms 
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Compared to the case with no obstacle avoidance, the total cost of the 

dynamic optimization problem for the optimal path maneuver including a 19.5 cm 

buffer was found to be J=1.067, a 10% increase.  The maneuver time also 

increased to 0.82 seconds and the weighted quadratic cost increased by .02 

units.  The only substantial difference between the KKT algorithm and the 

geometric algorithm was the computational time to converge to a solution.  On 

average, the KKT formulation was greater than twice as fast as the geometric 

algorithm.  Using a 60-node solution with a previously computed 60-node guess, 

the KKT algorithm took 11.9 seconds to solve versus 35 seconds for the 

geometric algorithm.   

B. DUAL 3-DOF MANIPULATORS  

The multiple 3-DOF robotic arm obstacle avoidance problems are more 

complicated.  The multiple time-optimal paths for each arm plus the nearly infinite 

obstacle avoidance paths make this an interesting, but challenging problem.  

While the algorithms presented to this point are theoretically capable of solving 

the problem, the number of potential collisions create more complex path 

functions.  For this 3-DOF, dual arm system, there are six potential collisions that 

must be accounted for vice one in the relatively simple 2-DOF system above.  In 

the case of the KKT algorithm, this results in 42 path constraints and 36 “dummy” 

control variables that compute the distance between any two links.  Table 7 

summarizes the endpoint constraints used for this simulation. 
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Table 7. 3-DOF Cooperative Path Planning Endpoint Conditions 
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For this example, 0f
i    was used to compute the final endpoint position 

in Table 7 for both arms to ensure the feasibility of the final condition.  Arm B was 

placed 30 cm from Arm A in the –y direction with the same 3-DOF limits from 

Equation set (25).  As was presented in the 2-DOF case, Figure 48 and Figure 

49 present the results with dmin=0.  The closest approach occurred between the 

manipulator links of the two arms (Link 3 in Figure 49) when they come within 1.6 

cm.   
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Figure 48. 3-DOF Path Planning without Obstacle Avoidance: State 
Trajectories 
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Figure 49. 3-DOF Path Planning without Obstacle Avoidance: Distance 
between Links  

One of the advantages of using DIDO is the ease in which the problem 

can be designed.  For example, the buffer distance can be tailored for each 

potential collision based on the physical dimensions of each link.  In this case, 

each link was assumed to be the same width and dmin= 8 cm for all six potential 

collisions.  DIDO was run using an initial three-point guess for a 16-node solution 

and then a bootstrap approach for subsequent iterations.  The middle point of 

this guess was nominally chosen so that both arms would orient vertically with 1 

at the midpoint the same as 10.  Intuitively, raising the arms to vertical before the 

d=5.8 cm 

d=1.6 cm 
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base turns would create separation and provide the arms with an obstacle free 

path in most cases.  In general, this was found to reduce the computation time.  

Figure 50 sketches the 60-node optimal path of both arms computed by DIDO 

with an dmin = 8 cm.  The obstacle avoidance maneuver took the same time as 

the the case with dmin = 0 cm, 10-8 seconds, with an increase in the quadratic cost 

of 3.5%.  Figure 51 -Figure 53 display the state and control trajectories, costate 

values, and Hamiltonian values computed by DIDO. 
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Figure 50. Cooperative Path Planning for Dual 3-DOF Arms with 8 cm Buffer 
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Figure 51. 3-DOF Cooperative Path Planning using Geometric Algorithm and   
8 cm Buffer: State Trajectories 
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Figure 52. 3-DOF Cooperative Path Planning using Geometric Algorithm and   
8 cm Buffer: Control Trajectories 
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Figure 53. 3-DOF Cooperative Path Planning using Geometric Algorithm and   
8 cm Buffer: Costate and Hamiltonian Values 

While the Hamiltonian value is constant at -1 from Figure 53, the value for 

1 for Arm A does not appear to be constant and steps up at the midpoint of the 

maneuver.  Changing the scale of the chart and plotting the Arm B 1 values on 

top of the Arm A 1 shows that this step up is of the same order of magnitude as 

the oscillations in the other costate values due to numerical computation errors 

seen in Figure 54.  Figure 55 illustrates that the avoidance algorithm does 

provide the required buffer of 8 cm between the links.   
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Figure 54. 3-DOF Cooperative Path Planning using Geometric Algorithm and   
8 cm Buffer:  1 Plot 
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Figure 55. 3-DOF Cooperative Path Planning using Geometric Algorithm and   
8 cm Buffer: Distance between Arms 
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To ensure feasibility of the solution, the DIDO computed control trajectory 

was linearly interpolated and used to propagate the system using Matlab’s 

ODE45 function and a fixed time step of 0.05 seconds.  The results of the 

propagated states, shown in  Figure 56, verify the feasibility of the control 

solution.  The KKT algorithm was also run using the endpoint constraints from 

Table 7 with nearly identical results to the geometric algorithm.  Figure 57 

compares the two state trajectories and Figure 58 plots the costate values that 

correspond well with the geometric algorithm shown in Figure 53.  
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Figure 56. 3-DOF Cooperative Path Planning using Geometric Algorithm and   
8 cm Buffer: Propagated State Values (o) compared with DIDO values (-) 
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Figure 57. 3-DOF Cooperative Path Planning: State Trajectory (KKT Algorithm 
versus Geometric Algorithm) 
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Figure 58. 3-DOF Cooperative Path Planning using KKT Algorithm: Costate 
Values  
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While the solution paths between the KKT and geometric algorithms are 

similar, two differences are worth pointing out.  Using the KKT algorithm, DIDO 

computed a cost function that was 7% lower than when it used the geometric 

algorithm.  Since the final maneuver time was the same to 10-8 seconds, the 

difference corresponds to a 21% decrease in the quadratic cost.  While the KKT 

algorithm seems to converge to a better cost function, a computational price is 

paid.  On average DIDO took three times longer to converge to a solution using 

the KKT algorithm than using the geometric algorithm.  The fact that the KKT 

algorithm converges to a slightly lower cost solution infers that the geometric 

algorithm may not be as accurate for complex systems and the KKT algorithm 

may be more robust.   

Whether this computational penalty can be alleviated is an interesting path 

for future work.  In general, with the 3-DOF problems visited in this work, the 

costate values were an order of magnitude smaller than the corresponding state 

values.  This brief comparison may indicate that the problem can be better scaled 

and balanced using some unknown designer units, which would allow the 

pseudospectral method employed by DIDO to converge faster to a more 

accurate optimal solution.   
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V. CONCLUSION AND RECOMMENDATIONS 

Application of pseudospectral methods for motion planning of multiple 

mulit-DOF robotic manipulators was studied.  The use of DIDO for obtaining 

optimal trajectories allowed the focus of effort to be placed on the problem 

formulation instead of solving the optimal control problem.  Rather than starting 

with a complex problem that incorporates trajectory planning and obstacle 

avoidance, a staged approach was found to be an effective means of developing 

the final optimal control problem formulation.  First, a relatively simple 2-DOF 

problem was formulated and solved with all the necessary conditions for 

optimality derived and verified.  Building on this basic problem formulation, the 

complexity of the system was increased to 3-DOF and then with the addition of a 

second robotic manipulator a 6-DOF system.  Pseudospectral techniques were 

effective in quickly solving optimal pick-and-place paths.  While not trivial, the 

addition of higher DOF arms and increasing the number of arms can be 

accomplished relatively simply within the pseudospectral framework.  

The choice of cost function is an important element that has a major effect 

on the ultimate solution.  While a minimum time trajectory is desired, some level 

of efficiency should be included, particularly when dealing with decoupled 

elements, or even lightly coupled elements as is often the case with multiple links 

and arms.  A weighted cost function that includes both a minimum time element 

and a measure of minimizing effort is desirable.  Once again, the use of DIDO 

allows the problem formulation to be flexible and easily accommodate a wide 

range of cost functions based on the mission objectives.    

Even the relatively simple model of a robotic arm using rigid links and 

perfect joints had a fairly complex form.  A higher fidelity model that includes joint 

parameters and system flexibility can be substituted in for the dynamics of the 

system.  While the level of effort to model the system would surely increase, the 

optimal control framework may exploit the more complex interactions to find a 

solution that increases the performance of the system.  
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Obstacle avoidance was included by defining path constraints that 

consisted of the minimum distance between the manipulators’ links.  Using 

parametric equations to define each link, an optimization problem was formulated 

and simultaneously solved to determine the minimum distance between each link 

and any potential obstacle.  Two techniques are presented that take advantage 

of the flexibility of problem formulation in DIDO.  The results suggest that for 

higher order systems, the geometric function for finding the minimum distance 

converges faster when provided a feasible guess.  The algorithm based on 

numerically solving the KKT conditions seems to be better behaved and solves a 

low-node problem with a simple two-point guess more reliably.  As the complexity 

of the system increases, the robustness of the KKT algorithm can be used to 

solve a low node solution, which can then be used as a guess for the geometric 

algorithm to refine the trajectory with less computation time.  The refined control 

solution can then be interpolated and used for a physical implementation.  

 As implemented, the use of the proposed obstacle avoidance techniques 

requires knowledge of all obstacles in the workspace.  It also assumes that each 

link in the system is modeled as a line, which may not be ideal for some systems.  

Further efforts can be placed into modifying the parametric distance function for 

complex shapes. 

By not having to focus on an analytical solution to the optimal control 

problem, variations in problem formulation can be explored.  Being able to 

compare the results of different problem formulations may result in the discovery 

of computational efficiencies.  Here, no scaling was done on any variables.  By 

experimenting with designer units, the computation time to solve the problem can 

be improved with no change in the physical trajectory.  Another variation not 

considered in this study is the use of the links’ minimum distance function in the 

cost as a pseudo-repulsive force or penalty function.  

 While the robotic manipulators studied here are relatively simple, the 

techniques presented can be used to solve more complicated problems that just 

a few years ago were considered unsuitable for real-time use [5].  Collision 
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avoidance and trajectory planning for cooperating arms using pseudospectral 

methods can also be studied for real-time autonomous implementation provided 

computational efficiencies are exploited. 
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APPENDIX - 2-DOF ARM DYNAMICS COMPUTATION 

 
______________ 

* Courtesy of Dr. Mark Karpenko, Guidance and Control Laboratory, 

Naval Post Graduate School, Monterey, CA. 
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